Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genetics ; 215(3): 653-664, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32461267

RESUMO

Small noncoding RNAs are central regulators of genome activity and stability. Their regulatory function typically involves sequence similarity with their target sites, but understanding the criteria by which they specifically recognize and regulate their targets across the genome remains a major challenge in the field, especially in the face of the diversity of silencing pathways involved. The dominance hierarchy among self-incompatibility alleles in Brassicaceae is controlled by interactions between a highly diversified set of small noncoding RNAs produced by dominant S-alleles and their corresponding target sites on recessive S-alleles. By controlled crosses, we created numerous heterozygous combinations of S-alleles in Arabidopsis halleri and developed an real-time quantitative PCR assay to compare allele-specific transcript levels for the pollen determinant of self-incompatibility (SCR). This provides the unique opportunity to evaluate the precise base-pairing requirements for effective transcriptional regulation of this target gene. We found strong transcriptional silencing of recessive SCR alleles in all heterozygote combinations examined. A simple threshold model of base pairing for the small RNA-target interaction captures most of the variation in SCR transcript levels. For a subset of S-alleles, we also measured allele-specific transcript levels of the determinant of pistil specificity (SRK), and found sharply distinct expression dynamics throughout flower development between SCR and SRK In contrast to SCR, both SRK alleles were expressed at similar levels in the heterozygote genotypes examined, suggesting no transcriptional control of dominance for this gene. We discuss the implications for the evolutionary processes associated with the origin and maintenance of the dominance hierarchy among self-incompatibility alleles.


Assuntos
Alelos , Proteínas de Arabidopsis/genética , Pareamento de Bases , Inativação Gênica , RNA Interferente Pequeno/genética , Autoincompatibilidade em Angiospermas/genética , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Genes Recessivos , Heterozigoto , RNA Interferente Pequeno/química , RNA Interferente Pequeno/metabolismo
2.
Ecol Evol ; 8(5): 2890-2900, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29531703

RESUMO

Historical demographic processes and mating systems are believed to be major factors in the shaping of the intraspecies genetic diversity of plants. Among Caryophyllales, the Beta section of the genus Beta, within the Amaranthaceae/Chenopodiaceae alliance, is an interesting study model with species and subspecies (Beta macrocarpa, Beta patula, Beta vulgaris maritima and B.v. adanensis) differing in geographical distribution and mating system. In addition, one of the species, B. macrocarpa, mainly diploid, varies in its level of ploidy with a tetraploid cytotype described in the Canary Islands and in Portugal. In this study, we analyzed the nucleotide diversity of chloroplastic and nuclear sequences on a representative sampling of species and subspecies of the Beta section (except B. patula). Our objectives were (1) to assess their genetic relationships through phylogenetic and multivariate analyses, (2) relate their genetic diversity to their mating system, and (3) reconsider the ploidy status and the origin of the Canarian Beta macrocarpa.

3.
Mol Biol Evol ; 34(8): 1878-1889, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28379456

RESUMO

Although the transition to selfing in the model plant Arabidopsis thaliana involved the loss of the self-incompatibility (SI) system, it clearly did not occur due to the fixation of a single inactivating mutation at the locus determining the specificities of SI (the S-locus). At least three groups of divergent haplotypes (haplogroups), corresponding to ancient functional S-alleles, have been maintained at this locus, and extensive functional studies have shown that all three carry distinct inactivating mutations. However, the historical process of loss of SI is not well understood, in particular its relation with the last glaciation. Here, we took advantage of recently published genomic resequencing data in 1,083 Arabidopsis thaliana accessions that we combined with BAC sequencing to obtain polymorphism information for the whole S-locus region at a species-wide scale. The accessions differed by several major rearrangements including large deletions and interhaplogroup recombinations, forming a set of haplogroups that are widely distributed throughout the native range and largely overlap geographically. "Relict" A. thaliana accessions that directly derive from glacial refugia are polymorphic at the S-locus, suggesting that the three haplogroups were already present when glacial refugia from the last Ice Age became isolated. Interhaplogroup recombinant haplotypes were highly frequent, and detailed analysis of recombination breakpoints suggested multiple independent origins. These findings suggest that the complete loss of SI in A. thaliana involved independent self-compatible mutants that arose prior to the last Ice Age, and experienced further rearrangements during postglacial colonization.


Assuntos
Arabidopsis/genética , Autofertilização/genética , Alelos , Sequência de Aminoácidos/genética , Proteínas de Arabidopsis/genética , Evolução Molecular , Genes de Plantas/genética , Haplótipos/genética , Mutação , Filogenia , Proteínas de Plantas/genética , Polimorfismo Genético/genética
4.
C R Biol ; 339(5-6): 197-206, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27156447

RESUMO

Our understanding of the systematics of the Eurytemora affinis complex developed at a fast pace over the last decades. Formerly considered as a complex of cryptic species, it is now believed to include three valid species: E. affinis, Eurytemora carolleeae, and Eurytemora caspica. American and European representatives have been studied in detail with respect to fine-scale geographic distribution, levels of genetic subdivision, evolutionary and demographic histories. Morphological components have been less explored. In this study, an analysis of the phylogeny and morphology of E. affinis was done, with a special focus on European populations. A total of 447 individuals of E. affinis from Europe were analyzed with genetic tools and 170 individuals according to morphological criteria. Common and new morphological and genetic features were analyzed. For this, we used ML and Bayesian methods to analyze the bar coding mt-DNA gene cytochrome c oxidase I subunit. Both genetic and morphological analyses showed high heterogeneities among the E. affinis populations from Europe. As a result, three local populations of E. affinis in Western Europe, including the European part of Russia, were established. Their genetic and morphological heterogeneity corresponded to the subspecies level.


Assuntos
Copépodes/anatomia & histologia , Copépodes/genética , Animais , Evolução Biológica , Copépodes/classificação , Complexo IV da Cadeia de Transporte de Elétrons/genética , Europa (Continente) , Variação Genética , Geografia , Haplótipos , Filogenia , Especificidade da Espécie , Água
5.
PLoS Genet ; 8(3): e1002495, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22457631

RESUMO

Self-incompatibility has been considered by geneticists a model system for reproductive biology and balancing selection, but our understanding of the genetic basis and evolution of this molecular lock-and-key system has remained limited by the extreme level of sequence divergence among haplotypes, resulting in a lack of appropriate genomic sequences. In this study, we report and analyze the full sequence of eleven distinct haplotypes of the self-incompatibility locus (S-locus) in two closely related Arabidopsis species, obtained from individual BAC libraries. We use this extensive dataset to highlight sharply contrasted patterns of molecular evolution of each of the two genes controlling self-incompatibility themselves, as well as of the genomic region surrounding them. We find strong collinearity of the flanking regions among haplotypes on each side of the S-locus together with high levels of sequence similarity. In contrast, the S-locus region itself shows spectacularly deep gene genealogies, high variability in size and gene organization, as well as complete absence of sequence similarity in intergenic sequences and striking accumulation of transposable elements. Of particular interest, we demonstrate that dominant and recessive S-haplotypes experience sharply contrasted patterns of molecular evolution. Indeed, dominant haplotypes exhibit larger size and a much higher density of transposable elements, being matched only by that in the centromere. Overall, these properties highlight that the S-locus presents many striking similarities with other regions involved in the determination of mating-types, such as sex chromosomes in animals or in plants, or the mating-type locus in fungi and green algae.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Evolução Molecular , Haplótipos , Autoincompatibilidade em Angiospermas/genética , Elementos de DNA Transponíveis/genética , Rearranjo Gênico , Genes Dominantes , Genes Recessivos , Filogenia , Recombinação Genética , Análise de Sequência de DNA
6.
Mol Ecol ; 14(14): 4403-14, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16313601

RESUMO

The population structure of the pseudo-metallophyte herb, Arabidopsis halleri, was studied using Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP) on chloroplast DNA (cpDNA). The history of metallicolous (M) populations showing increased zinc tolerance was investigated. Eight primer-enzyme combinations out of 72 tested were applied to a total of 625 individuals from 28 widespread populations, 14 of them being M. Eleven distinct chlorotypes were found: five were common to nonmetallicolous (NM) and M populations, whereas six were only observed in one edaphic type (five in NM and one in M). No difference in chlorotype diversity between edaphic types was detected. Computed on the basis of chlorotype frequencies, the level of population differentiation was high but remained the same when taking into account levels of molecular divergence between chlorotypes. Isolation by distance was largely responsible for population differentiation. Geographically isolated groups of M populations were more genetically related to their closest NM populations than to each other. Our results suggest that M populations have been founded separately from distinct NM populations without suffering founding events and that the evolution towards increased tolerance observed in the distinct M population groups occurred independently.


Assuntos
Adaptação Fisiológica/genética , Arabidopsis/genética , Variação Genética , Genética Populacional , Arabidopsis/metabolismo , Sequência de Bases , Análise por Conglomerados , DNA de Cloroplastos/genética , Europa (Continente) , Geografia , Haplótipos/genética , Dados de Sequência Molecular , Polimorfismo de Fragmento de Restrição , Análise de Sequência de DNA , Zinco/metabolismo
7.
Mol Ecol ; 11(6): 979-90, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12030977

RESUMO

In endangered species, it is critical to analyse the level at which populations interact (i.e. dispersal) as well as the levels of inbreeding and local adaptation to set up conservation policies. These parameters were investigated in the endangered species Parnassia palustris living in contrasted habitats. We analysed population structure in 14 populations of northern France for isozymes, cpDNA markers and phenotypic traits related to fitness. Within population genetic diversity and inbreeding coefficients were not correlated to population size. Populations seem not to have undergone severe recent bottleneck. Conversely to pollen migration, seed migration seems limited at a regional scale, which could prevent colonization of new sites even if suitable habitats appear. Finally, the habitat type affects neither within-population genetic diversity nor genetic and phenotypic differentiation among populations. Thus, even if unnoticed local adaptation to habitats exists, it does not influence gene flow between populations.


Assuntos
Ecossistema , Variação Genética , Saxifragaceae/genética , DNA de Cloroplastos/análise , França , Frequência do Gene , Genes de Plantas , Genética Populacional , Endogamia , Isoenzimas/análise , Fenótipo , Proteínas de Plantas/análise , Polimorfismo Genético , Saxifragaceae/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...